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APPLICATIONS OF MULTISCALE HIERARCHICAL
DECOMPOSITION TO BLIND DECONVOLUTION*

TOBIAS WOLF\dagger , STEFAN KINDERMANN\ddagger , ELENA RESMERITA\dagger , AND

LUMINITA VESE\S 

Abstract. Blind image deconvolution is a challenging, highly ill-posed nonlinear inverse prob-
lem. We introduce a Multiscale Hierarchical Decomposition Method (MHDM) that iteratively solves
variational problems with adaptive data and regularization parameters, towards obtaining finer and
finer details of the unknown kernel and image. We establish convergence of the residual in the noise-
free data case, and then in the noisy data case when the algorithm is stopped early by means of a
discrepancy principle. Fractional Sobolev norms are employed as regularizers for both kernel and
image, with the advantage of computing the minimizers explicitly in a pointwise manner. In order
to break the notorious symmetry occurring during each minimization step, we enforce a positivity
constraint on the Fourier transform of the kernels. Numerical comparisons with a single-step varia-
tional method and a nonblind MHDM show that our approach produces comparable results, while
less laborious parameter tuning is necessary at the price of more computations. Additionally, the
scale decomposition of both reconstructed kernel and image provides a meaningful interpretation of
the involved iteration steps.

Key words. blind deconvolution, multiscale expansion, ill-posed problem, image restoration

MSC codes. 42B10, 46N10, 68U10

DOI. 10.1137/24M1692812

1. Introduction. An important problem in image processing is image restora-
tion, which aims to remove noise and blur from a degraded image. More precisely,
assume that f is a given blurry noisy image, with the degradation model f = k \ast u+n\delta ,
where u is the true image to be recovered, k is a blurring kernel, and n\delta denotes some
kind of additive noise. There are plenty of statistical, variational, and partial differ-
ential equation strategies to approach the problem. A classical variational model for
this linear ill-posed problem under the assumption of normally distributed noise is

min
u

\Bigl\{ 
\| f  - k \ast u\| 2L2(\BbbR 2) + \lambda Reg(u)

\Bigr\} 
,(1.1)

where \lambda > 0 is the regularization parameter that should balance stability and accuracy
in the solution reconstruction, and Reg stands for a penalty that promotes desired
features for the recovered image, such as total variation in case of piecewise constant
structures (see [35]). However, recovering both u and k from f , knowing little informa-
tion about the degradation, is a highly ill-posed nonlinear inverse problem, so-called
blind deconvolution. For instance, it occurs in the contexts of astronomical imaging
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1290 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

[18, 30, 33], microscopy [20, 11, 1], and movement correction in digital photography
[8, 14, 23]. As above, one way to alleviate the difficulty in solving this problem is to
use the variational approach with regularization.

Seminal work in [41] and [10] proposed blind deconvolution models using joint
minimizations of the form

min
u,k

\Bigl\{ 
\| f  - k \ast u\| 2L2(\BbbR 2) + \lambda Reg(u) + \mu Reg(k)

\Bigr\} 
,(1.2)

which can be solved using alternating minimization and two coupled Euler--Lagrange
equations. Here Reg denotes some generic regularization functional, which might be
chosen differently for u and k. In [41], the regularization terms were both Sobolev
H1 norms, while in [10], they were the total variation for u, and total variation or
the Sobolev norm H1 for k. Still, the joint regularization problem, as is, involves
too much symmetry between the unknowns u and k, and thus, nonuniqueness issues
appear. Note that, under some assumptions, if (\~u, \~k) is a joint minimizer in (1.2),
then also

\bigl( 
m\~k, \~u

m

\bigr) 
is a joint minimizer for some constant m. A detailed analysis of

this difficulty and useful ideas are presented in the book [9, Chapter 5]. For instance,
additional constraints can be included for better restoration: k \geq 0,

\int 
\BbbR 2 k(x)dx = 1,

or k radially symmetric, to break the symmetry of the problem. Regarding possible
regularization functionals, we mention the works [39, 37, 22], which employ sparsity
promoting functionals based on \ell p (quasi)norms, as well as [28, 36], where general-
izations of the total variation are used as penalty terms for the image. Note that
regularization of both the image and the kernel seems necessary, since omitting a
penalty on the latter might lead to inadequate results; cf. [31]. In addition to the
variational approaches, two stage methods [13, 19], as well as a multitude of (statis-
tically motivated) iterative algorithms [17, 25, 15, 2, 24], have been proposed. More
recently, the application of machine learning methods to blind deconvolution has be-
come popular [34, 4, 16]. However, in this work, we focus on a different technique,
called the Multiscale Hierarchical Decomposition Method (MHDM), introduced in
[38, 29], that favors gradual reconstruction of image features at increasingly small
scales. More precisely, in that work for (denoising and) nonblind deconvolution, it
was emphasized that separating cartoon and texture in images is highly dependent
on the scale \lambda from (1.1), in the sense that details in an image (usually part of the
texture) can be seen as a cartoon at a refined scale, such as \lambda /2.

In [38, 29], one starts with getting a minimizer u0 of (1.1) and then continues
with iteratively solving similar minimization problems which aim at extracting more
detailed information from the current data f  - k \ast (u0 + \cdot \cdot \cdot +ui - 1) by using different
scale parameters \lambda at every step. Thus, one obtains a sequence of minimizers u0, u1,
. . ., via

ui \in argmin
u

\Bigl\{ 
\| f  - k \ast (u+ u0 + \cdot \cdot \cdot + ui - 1)\| 2L2(\BbbR 2) + \lambda iReg(u)

\Bigr\} 
,

such that f \approx k \ast (u0 + u1 + \cdot \cdot \cdot + un). Energy estimates and applications to nonblind
deconvolution, scale separation, and registration are shown in [29, 27]. Moreover, error
estimates for the data-fitting term and stopping index rules are provided in recent
works [26, 21, 3], which also clearly point out that the MHDM merits are at least
twofold. Namely, it provides fine recoveries of images with multiscale features that
are otherwise not obtainable by single step variational models, and it is pretty robust
with respect to the choice of the initial parameter \lambda (and of parameters involved in
the computational procedures), thus avoiding the burden of choosing it appropriately

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1291

when performing only one step in (1.1). To be fair, though, on the comparison, note
that more computations are involved when using MHDM.

To benefit from these effects, we are interested in extending the MHDM to the
more complex problem of blind deconvolution. Clearly, we do not have

(k0 + k1 + \cdot \cdot \cdot + kn) \ast (u0 + u1 + \cdot \cdot \cdot + un) = k0 \ast u0 + k1 \ast u1 + \cdot \cdot \cdot + kn \ast un,

as we would try to ``blindly"" apply the hierarchical decomposition method to blind
deconvolution. Instead, we introduce an appropriate procedure that provides recon-
structions of the kernel and of the true image of the form in the left-hand side above.
Let us first specify the notation. We consider the observed blurred and noisy image
f\delta given by

f\delta =K\dagger \ast U\dagger + n\delta ,(1.3)

where U\dagger is the true image, K\dagger is a blurring kernel, and n\delta is some additive noise.
We therefore assume U\dagger ,K\dagger \in L2(\BbbR 2) for the convolution to be well defined. Here
L2(\BbbR 2) denotes the space of real-valued, square integrable functions on \BbbR 2. The
space of complex-valued, square integrable functions will be denoted byL2(\BbbR 2,\BbbC ). Let
J1, J2 :L

2(\BbbR 2)\rightarrow \BbbR \cup \{ \infty \} be proper, lower semicontinuous, convex, and nonnegative
functionals. The aim is to reconstruct U\dagger andK\dagger from the observation f\delta by adapting
the MHDM to problem (1.3). That is, we would like to decompose U\dagger and K\dagger as
sums

U\dagger =

\infty \sum 
i=0

ui, K\dagger =

\infty \sum 
i=0

ki,(1.4)

where each component ki and ui contains features of K\dagger and U\dagger , respectively, at a
different scale. Let us point out that the additive decomposition of both convoluted
functions has a multitude of potential applications, even beyond image deblurring.
For instance, the sequence of iterates ki contains information that could be used in
the classification or learning of point-spread-functions in real applications, such as in
remote sensing and atmospheric sciences, where point-spread-functions are not known
and have complicated features and oscillations at different scales (see, for instance,
the GeoSTAR PSF in [40]). Furthermore, such decompositions could be applied
to parameter identification problems with an unknown differential operator. The
kernel decomposition in such problems corresponds to an additive decomposition of
the problem's Green function. Hence, the scale decomposition of this function can be
interpreted as different physical effects. Those components corresponding to coarser
scales describe the overall model, while the finer scales act as its refinements.

Therefore, we proceed as follows. Let (\lambda n)n\in \BbbN 0
, (\mu n)n\in \BbbN 0

be decreasing sequences
of positive real numbers. Additionally, let \Phi : (L2(\BbbR 2)\times L2(\BbbR 2))\times L2(\BbbR 2)\rightarrow [0,\infty ) be
a measure of similarity between K \ast U and an image f , which satisfies \Phi (K,U,f) = 0
for all K,U with K \ast U = f . We consider data fidelity terms for noisy observations
that have the form

\Phi (K,U,f\delta ) =
\bigm\| \bigm\| f\delta  - K \ast U

\bigm\| \bigm\| 2
L2 + \delta S1

(U) + \delta S2
(K).(1.5)

Here

\delta S(z) =

\Biggl\{ 
0 if z \in S,
\infty if z /\in S

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1292 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

denotes the indicator function of a convex set S and is used to encode additional
assumptions such as positivity of the kernel or constraints on the means of images
and kernels.

We compute the initial iterates as

(u0, k0)\in argmin
u,k\in L2(\BbbR 2)

\Phi (k,u, f\delta ) + \lambda 0J1(u) + \mu 0J2(k).(1.6)

Next, set U0 = u0, K0 = k0 and determine the increments u1, k1 such that U1 =U0+u1
and K1 =K0 + k1 via

(u1, k1)\in argmin
u,k\in L2(\BbbR 2)

\Biggl\{ \bigm\| \bigm\| f\delta  - (k+K0) \ast (u+U0)
\bigm\| \bigm\| 2
L2

+ \delta S1(u+U0) + \delta S2(k+K0) + \lambda 1J1(u) + \mu 1J2(k)

\Biggr\} 
.

Thus, we iterate, for n\in \BbbN 0,

(un+1, kn+1)\in argmin
u,k\in L2(\BbbR 2)

\Phi (k+Kn, u+Un, f
\delta ) + \lambda n+1J1(u) + \mu n+1J2(k),(1.7)

that is,

(un+1, kn+1)\in argmin
u,k\in L2(\BbbR 2)

\Biggl\{ \bigm\| \bigm\| f\delta  - (k+Kn) \ast (u+Un)
\bigm\| \bigm\| 2
L2

+ \delta S1
(u+Un) + \delta S2

(k+Kn) + \lambda n+1J1(u) + \mu n+1J2(k)

\Biggr\} 
,

and set Un+1 = un+1+Un, Kn+1 = kn+1+Kn. Note that (1.7) can also be formulated
as

(Un+1,Kn+1)\in argmin
U,K\in L2(\BbbR 2)

\Phi (K,U,f\delta ) + \lambda n+1J1(U  - Un) + \mu n+1J2(K  - Kn).(1.8)

We extract in a nonlinear way a sequence of functions (atoms) approximating f =
K\dagger \ast U\dagger ,

f \approx k0 \ast u0,
f \approx (k0 + k1) \ast (u0 + u1),

. . .

f \approx (k0 + k1 + . . .+ kn) \ast (u0 + u1 + . . .+ un) =Kn \ast Un.

This refined multiscale hierarchical blind deconvolution model will provide a better
choice for the solution than the single step (variational) model, especially when re-
constructing images with different scales, as each component (ui, ki) at a scale (\lambda i, \mu i)
contains additional information that would have been ignored at the previous, coarser
scales. As usual for ill-posed problems, we stop the iterations early, according to the
discrepancy principle, in order to prevent meaningless computational steps.

We focus on Sobolev norms as regularizers for both kernel and image and show
that the iterates can be computed in a pointwise manner by means of the Fourier
domain. When choosing the Fourier transforms of the kernels to be positive, we get

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1293

the chance to break the unwanted symmetry which naturally occurs in such regu-
larization frameworks. An interpretation of this choice in terms of positive definite
functions is provided as well. Note that considering more modern penalties in our
approach is beyond the scope of this study, since it would require accounting for a
priori information and tedious computational methods specific to that setting.

Our work is structured as follows. Section 2 presents the convergence properties of
the method, as well as the stopping rule. Section 3 is dedicated to the regularization
with Sobolev norms, detailing the pointwise computation of the minimizers, while
section 4 illustrates the numerical experiments that fairly compare our procedure to
a single-step variational method and to a nonblind deconvolution method.

2. Convergence properties and stopping rule. To the best of our knowl-
edge, convergence results of the iterates Un and Kn generated by the MHDM are not
even known for simpler one-variable deblurring problems; see [29]. However, conver-
gence of the residual f\delta  - Kn \ast Un can be shown analogously to Theorems 2.1 and 2.3
in [21]. For completeness, we will provide a proof in the case of noisy data.

Theorem 2.1. Let f = K\dagger \ast U\dagger be the blurry, but noise-free, image, and let
(Un,Kn) = (

\sum n
i=0 ui,

\sum n
i=0 ki) with (ui, ki) attained from (1.6), (1.7) with f\delta replaced

by f . Assume that J1 and J2 are minimal at 0 and that there are C1,C2 \geq 1 such
that J1(v1  - v2)\leq C1(J1(v1) + J1(v2)) and J2(h1  - h2)\leq C2(J2(h1) + J2(h2)) for all
v1, v2, h1, h2. Additionally, assume U\dagger \in domJ1 and K\dagger \in domJ2. If \lambda n and \mu n are
chosen such that \lambda n - 1 \geq 2C\lambda n and \mu n - 1 \geq 2C\mu n for all n\in \BbbN with C =max\{ C1,C2\} ,
then \Phi (Un,Kn, f) is decreasing in n and satisfies

\Phi (Un,Kn, f)\leq 
2C
\bigl( 
\lambda 0J1(U

\dagger ) + \mu 0J2(K
\dagger )
\bigr) 

n+ 1
.(2.1)

It is well known that iterative methods for ill-posed problems perturbed by noise
have to be stopped early. We use the discrepancy principle as a stopping criterion;
namely we terminate the iteration at index n\ast (\delta ) defined as

n\ast (\delta ) =max
\bigl\{ 
n\in N : \Phi (Kn,Un, f

\delta )> \tau \delta 2
\bigr\} 
+ 1(2.2)

for some \tau > 1. The well-definedness of the stopping index n\ast (\delta ) is a consequence of
the following theorem, where for simplicity of notation the iterates obtained from the
noisy observation f\delta are still denoted by Kn and Un.

Theorem 2.2. Under the assumptions of Theorem 2.1, let Un,Kn be obtained by
(1.6) and (1.7). If \| n\delta \| L2 \leq \delta for some \delta > 0 holds, then the residual \Phi (Kn,Un, f

\delta )
is decreasing in n and satisfies the estimate

\Phi (Kn,Un, f
\delta )\leq 

2C
\bigl( 
\lambda 0J1(U

\dagger ) + \mu 0J2(K
\dagger )
\bigr) 

n+ 1
+ \delta 2.(2.3)

If additionally (n\ast (\delta ))\delta >0 is unbounded as \delta \rightarrow 0, then (\Phi (Kn\ast (\delta ),Un\ast (\delta ), f
\delta ))\delta >0 con-

verges to zero.

Proof. Let n0 \in \BbbN . We may assume \Phi (Kn0
,Un0

, f\delta ) \geq \delta 2, as otherwise there is
nothing to show. By the optimality of (un, kn) in (1.7), it is

\Phi (Kn,Un, f
\delta ) + \lambda nJ1(un) + \mu nJ2(kn)\leq \Phi (Kn - 1,Un - 1, f

\delta ) + \lambda nJ1(0) + \mu nJ2(0).

(2.4)
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1294 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

Together with the minimality of J1 and J2 at 0, this implies that \Phi (Kn,Un, f
\delta ) is

decreasing in n. On the other hand, comparing to (U\dagger  - Un - 1,K
\dagger  - Kn - 1) yields

\Phi (Un,Kn, f
\delta ) + \lambda nJ1(un) + \mu nJ2(kn)\leq \Phi (Un - 1 + (U\dagger  - Un - 1),Kn - 1

+ (K\dagger  - Kn - 1), f
\delta ) + \lambda nJ1(U

\dagger  - Un - 1) + \mu nJ2(K
\dagger  - Kn - 1)

\leq \delta 2 + \lambda nJ1(U
\dagger  - Un - 1) + \mu nJ2(K

\dagger  - Kn - 1).(2.5)

Now, for any 1\leq j \leq n0 it is

\Phi (Kj ,Uj , f
\delta )\geq \delta 2,(2.6)

and we have

\Phi (Kj ,Uj , f
\delta ) + \lambda jJ1(U

\dagger  - Uj) + \mu jJ2(K
\dagger  - Kj)

= \Phi (Kj ,Uj , f
\delta ) + \lambda jJ1(U

\dagger  - uj  - Uj - 1) + \mu jJ2(K
\dagger  - kj  - Kj - 1)

\leq \Phi (Kj ,Uj , f
\delta ) +C

\bigl( 
\lambda jJ1(U

\dagger  - Uj - 1) + J1(uj) + \mu jJ2(K
\dagger  - Kj - 1) + J2(kj)

\bigr) 
= \Phi (Kj ,Uj , f

\delta ) + \lambda jJ1(uj) + \mu jJ2(kj)

+ (C  - 1) (\lambda jJ1(uj) + \mu jJ2(kj))

+ C
\bigl( 
\lambda jJ1(U

\dagger  - Uj - 1) + \lambda jJ2(K
\dagger  - Kj - 1)

\bigr) 
(2.5)

\leq \delta 2 + (C  - 1) (\lambda jJ1(uj) + \mu jJ2(kj))

+ (C + 1)
\bigl( 
\lambda jJ1(U

\dagger  - Uj - 1) + \mu jJ2(K
\dagger  - Kj - 1)

\bigr) 
(2.5)

\leq \delta 2 + (C  - 1)
\bigl( 
\delta 2  - \Phi (Kj ,Uj , f) + \lambda jJ1(U

\dagger  - Uj - 1) + \mu jJ2(K
\dagger  - Kj - 1)

\bigr) 
+ (C + 1)

\bigl( 
\lambda jJ1(U

\dagger  - Uj - 1) + \mu jJ2(K
\dagger  - Kj - 1)

\bigr) 
(2.6)

\leq \delta 2 + 2C
\bigl( 
\lambda jJ1(U

\dagger  - Uj - 1) + \mu jJ2(K
\dagger  - Kj - 1)

\bigr) 
.

Therefore the choice \lambda j - 1 \geq 2C\lambda j and \mu j - 1 \geq 2C\mu j yields

\Phi (Kj ,Uj , f
\delta ) + \lambda jJ1(U

\dagger  - Uj) + \mu jJ2(K
\dagger  - Kj)\leq \delta 2(2.7)

+ \lambda j - 1J1(U
\dagger  - Uj - 1) + \mu j - 1J2(K

\dagger  - Kj - 1).

Using 0 instead of Uj - 1 and Kj - 1 in the previous calculations, one obtains for j = 0
that

\Phi (K0,U0, f
\delta ) + \lambda 0J1(U

\dagger  - U0) + \mu 0J2(K
\dagger  - k0)\leq \delta 2 + 2C(\lambda 0J1(U

\dagger ) + \mu 0J2(K
\dagger )).

(2.8)

Using (2.7) repeatedly for j = 1, . . . , n0 and employing the nonnegativity of J1 and
J2, it is

(n0 + 1)\Phi (Un0 ,Kn0 , f)
(2.4)

\leq 
n0\sum 
j=0

\Phi (Uj ,Kj , f) +
\bigl( 
\lambda n0J1(U

\dagger  - Un0) + \mu n0J2(K
\dagger  - Kn0)

\bigr) 
(2.7)

\leq \delta 2 +

n0 - 1\sum 
j=0

\Phi (Uj ,Kj , f) +
\bigl( 
\lambda n0 - 1J1(U

\dagger  - Un0 - 1) + \mu n0 - 1J2(K
\dagger  - Kn0 - 1)

\bigr) 
\leq \cdot \cdot \cdot \leq (n0)\delta 

2 +
\bigl( 
\lambda 0J1(U

\dagger  - U0) + \mu 0J2(K
\dagger  - K0)

\bigr) 
(2.8)

\leq (n0 + 1)\delta 2 + 2C
\bigl( 
\lambda 0J1(U

\dagger ) + \mu 0J2(K
\dagger )
\bigr) 
.

Dividing by n0 + 1 proves (2.3).
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1295

3. Sobolev norm regularizers. In order to illustrate our proposed method, we
follow the work [7] and use Sobolev norms as regularizers for kernels and images. That
is, we consider the case \Phi (K,U,f) = \| K \ast U  - f\| 2L2 + \delta S1

(U) + \delta S2
(K), J1 = \| \cdot \| 2Hr ,

and J2 = \| \cdot \| 2Hs for r, s\geq 0. For defining the Bessel potential norm for r \in \BbbR we set
\Delta (x) = 1+ | x| 2. Then

\| u\| 2Hr =

\int 
\BbbR 2

\Delta (x)r | \^u(x)| 2 dx,(3.1)

where \^u is the Fourier transform of u. Note that the well-definedness of the MHDM
with those regularizers follows analogously to [19, Theorem 3.6] for all sets of con-
straints that are closed under addition and satisfy S1\cap domJ1 \not = \emptyset and S2\cap domJ2 \not = \emptyset .
However, we will start with analyzing the MHDM without any constraints (i.e.,
S1 = S2 =L2(\BbbR 2)). Hence, we compute the first iterate (U0,K0) via

min
u,k\in L2(\BbbR 2)

\bigm\| \bigm\| k \ast u - f
\bigm\| \bigm\| 2
L2 + \lambda 0

\bigm\| \bigm\| u\bigm\| \bigm\| 2
Hr + \mu 0

\bigm\| \bigm\| k\bigm\| \bigm\| 2
Hs .(3.2)

The norm defined in (3.1) is different from, but equivalent to, the one used in [7].
Nonetheless, the results of [7, Lemma 3.3] still hold: Denote the Fourier transform of
f by \^f , and denote by \=z the complex conjugate of a complex number z. Then, the
Fourier transforms (\^u0, \^k0) of all minimizers of (3.2) are pointwise given as

\^u0 = sgn( \=\psi \^f)

\sqrt{} \biggl[ \sqrt{} 
\mu 0

\lambda 0
\Delta s - r

\bigm| \bigm| \bigm| \^f \bigm| \bigm| \bigm|  - \mu 0\Delta s

\biggr] 
+

,(3.3)

\^k0 = sgn(\psi )

\sqrt{}    \Biggl[ \sqrt{} \lambda 0
\mu 0

\Delta r - s
\bigm| \bigm| \bigm| \^f \bigm| \bigm| \bigm|  - \lambda 0\Delta r

\Biggr] 
+

,(3.4)

for arbitrary measurable functions \psi with \psi (x) \not = 0 for all x. Here [w]+ :=max\{ w,0\} 
and

sgn (z) =

\left\{   
z

| z| 
if z \not = 0,

0 if z = 0

for z \in \BbbC . From here on we assume that f has limited bandwidth, i.e., \^f is com-
pactly supported. This ensures that \^u0, \^k0 as defined in (3.3) and (3.4) are indeed in
L2(\BbbR 2,\BbbC ) (see [7]) and all subsequent minimizers can be calculated pointwise. Gen-
erally, applying the inverse Fourier transform to (3.3) and (3.4) gives complex-valued
minimizers of (3.2). Thus, in order to obtain real-valued minimizers we need an
appropriate choice for the function \psi . For this, recall the following result.

Proposition 3.1. Let u\in L2(\BbbR d,\BbbC ) with Fourier transform \^u. Then
(i) \^u is real-valued if and only if u satisfies u(x) = u( - x) for all x\in \BbbR d;
(ii) u is real-valued if and only if \^u satisfies \^u(x) = \^u( - x) for all x\in \BbbR d.

Proof. See [6, Chapter 1].

Since the image f is real-valued, we obtain \^f(x) = \^f( - x) for all x\in \BbbR 2. Moreover,
due to the symmetry of \Delta (x), we choose \psi such that \psi (x) = \psi ( - x) for all x \in \BbbR 2,
thereby ensuring that the inverse Fourier transforms of \^u0 and \^k0 are real-valued.

For our method, we choose \psi = 1 and compute u0, k0 by applying the inverse
Fourier transform. With this choice, we can interpret \^u0 as the pointwise square
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1296 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

root of a shrinkage operator applied to \^f . In particular, small frequencies in Fourier
domain are eliminated, which removes noise. Furthermore, the choice \psi = 1 means
that the Fourier transform of k0 is nonnegative almost everywhere. Let us also give
an interpretation of this. First, recall the notion of positive semidefinite functions
(see, e.g., [32, section 4.4.3]).

Definition 3.2. A function \varphi :\BbbR d \rightarrow \BbbC is positive semidefinite if

N\sum 
l,m=1

\varphi (xl  - xm)\xi l \=\xi m is real-valued and satisfies

N\sum 
l,m=1

\varphi (xl  - xm)\xi l \=\xi m \geq 0(3.5)

for all x1, . . . , xn \in \BbbR d, \xi 1, . . . , \xi N \in \BbbC , and any N \in \BbbN .

Lemma 3.3. Let k : \BbbR d \rightarrow \BbbC be a function such that its Fourier transform \^k is
nonnegative almost everywhere. Then k is positive semidefinite.

Proof. It follows analogously to the proof of [32, Theorem 4.89].

This means the kernel k0 obtained from choosing \psi = 1 in (3.4) is positive semi-
definite. In particular, it has the following properties, as one can see from (3.5) and
Proposition 3.1.

Corollary 3.4. Let \varphi :\BbbR d \rightarrow \BbbC be positive semidefinite. Then
(i) \varphi (0) is real-valued and nonnegative,
(ii) | \varphi (x)| \leq \varphi (0) for all x\in \BbbR d,
(iii) \varphi ( - x) =\varphi (x) for all x\in \BbbR d.

Proof. See Chapter 12, Lemma 3 in [12].

Thus, k0 attains a maximum at x = 0. Moreover, the solutions of (3.2) will be
even functions with a peak at x = 0, so that they might be particularly useful for
approximating conical combinations of centered Gaussians.

We therefore want to have the constraint that the images have the same Fourier
phase as \^f and the kernels have nonnegative Fourier transforms for all iterates of the
MHDM. In the following we will show that the iterates of the MHDM with S1 = S2 =
L2(\BbbR 2) can indeed be chosen to have this property. As a result, we obtain an explicit
way to compute the iterates pointwise as certain minimizers of (1.7) without having
to enforce the constraints that sgn ( \^Un) = sgn ( \^f) and that \^Kn is nonnegative.

Computation of the increments. Let us start with deriving how to compute
the increments (un+1, kn+1) for n \geq 0. Generally, we have to solve problems of the
form

(un+1, kn+1)\in argmin
u,k\in L2(\BbbR 2)

\bigm\| \bigm\| (u+Un) \ast (k+Kn) - f
\bigm\| \bigm\| 2
L2 + \lambda n+1

\bigm\| \bigm\| u\bigm\| \bigm\| 2
Hr + \mu n+1

\bigm\| \bigm\| k\bigm\| \bigm\| 2
Hs .

(3.6)

Thus, in the Fourier space, this amounts to solving

(\^un+1, \^kn+1)\in argmin
\^u,\^k\in L2(\BbbR 2,\BbbC )

\biggl\{ \int 
\BbbR 2

\bigm| \bigm| \bigm| \Bigl( \^u(x) + \^Un(x)
\Bigr) \Bigl( 

\^k(x) + \^Kn(x)
\Bigr) 
 - \^f(x)

\bigm| \bigm| \bigm| 2
+ \lambda n+1\Delta (x)r | \^u(x)| 2 + \mu n+1\Delta (x)s

\bigm| \bigm| \bigm| \^k(x)\bigm| \bigm| \bigm| 2 dx\biggr\} .(3.7)
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1297

As for computing minimizers in the initial step (3.2), we would like to solve (3.7)
pointwise. Following the notation of [7], we fix x\in \BbbR 2 and set

an+1 = \lambda n+1\Delta 
r(x), bn+1 = \mu n+1\Delta 

s(x),

qn = \^Kn(x), pn = \^Un(x), z = \^f(x).

Hence, we are concerned with computing

(p\ast n+1, q
\ast 
n+1)\in argmin

p,q\in \BbbC 
fn(p, q)

:= argmin
p,q\in \BbbC 

| (p+ pn)(q+ qn) - z| 2 + an+1 | p| 2 + bn+1 | q| 2 ,
(3.9)

where p\ast n+1 = \^un+1(x) and q
\ast 
n+1 =

\^kn+1(x). For the subsequent analysis of (3.9), we
derive the first order optimality conditions with complex variables. To this end, we
consider the problem as a minimization problem in \BbbR 2. We start with the following
observation. For any complex number w = Re(w) + iIm(w), we write the canonical
embedding into \BbbR 2 as \~w= (Re(w), Im(w))T . Hence, for u, v,w \in \BbbC it is

| vu - w| 22 =
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( \~v1  - \~v2

\~v2 \~v1

\biggr) 
\~u - \~w

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

.

Taking the gradient with respect to \~u then gives

\nabla \~u

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \biggl( \~v1  - \~v2
\~v2 \~v1

\biggr) 
\~u - \~w

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\Biggr) 
= 2

\biggl( 
\~v1 \~v2
 - \~v2 \~v1

\biggr) \biggl( \biggl( 
\~v1  - \~v2
\~v2 \~v1

\biggr) 
\~u - \~w

\biggr) 
= 2\=v(vu - w).

Therefore, the first order optimality conditions of (3.9) are given by

(\=q+ \=qn)((p+ pn)(q+ qn) - z) + an+1p= 0,(3.10)

(\=p+ \=pn)((p+ pn)(q+ qn) - z) + bn+1q= 0.(3.11)

The following theorem shows that it is possible to choose the increment q\ast n non-
negative for all n \in \BbbN , which therefore yields that the iterates qn are nonnegative for
all n\in \BbbN .

Theorem 3.5. There is a choice for (p\ast n, q
\ast 
n) such that

(i) qn \in [0,\infty ),
(ii) \=zpn = z\=pn \in [0,\infty ),
(iii) \=zpnqn \leq | z| 2

for all n \in \BbbN 0. Here p\ast 0 = p0 and q\ast 0 = q0 are understood as the solution of (3.9) with
p - 1 = q - 1 = 0.

Proof. If z = 0, then pn = qn = 0 for all n \in \BbbN , and the claim follows trivially.
Hence, we assume z \not = 0. Since an+1 > 0 for all n \in \BbbN 0, equation (3.10) is equivalent
to

p+ pn =
an+1pn + z(\=q+ \=qn)

| q+ qn| 2 + an+1

.(3.12)

With this, we can prove the claims by induction.
Base case: Choose q\ast 0 \in [0,\infty ) according to (3.3). Therefore, one has \=q0 = q0 = q\ast 0

and, by (3.12), it follows that

\=zp\ast 0 = \=zp0 =
\=zzq0

| q0| 2 + a1
=

q0 | z| 2

| q0| 2 + a1
\geq 0,
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1298 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

and

\=zp0q0 =
| q0| 2 | z| 2

| q0| 2 + a1
=

| q0| 2

| q0| 2 + a1
| z| 2 \leq | z| 2 .

Therefore, (i)--(iii) follow for the case n= 0.
Induction step: Assume (i)--(iii) hold for some n \in \BbbN 0. In particular, this means

\=qn = qn, so that (3.12) becomes

p+ pn =
an+1pn + z(\=q+ qn)

| q+ qn| 2 + an+1

.(3.13)

Hence, we can restrict the minimization of fn to minimizing over
the set of all (p, q), for which p satisfies (3.13). We thus need to
minimize the functional

\~fn(q) :=

\bigm| \bigm| \bigm| \bigm| \bigm| an+1pn(q+qn)+z | q+qn| 2

| q+qn| 2 + an+1

 - z

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ an+1

\bigm| \bigm| \bigm| \bigm| \bigm| an+1pn + z(\=q+ qn)

| q+ qn| 2 + an+1

 - pn

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ bn+1 | q| 2

=

\bigm| \bigm| \bigm| \bigm| \bigm| an+1pn(q+ qn) - an+1z

| q+ qn| 2 + an+1

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ an+1

\bigm| \bigm| \bigm| \bigm| \bigm| z(\=q+ qn) - pn | q+ qn| 2

| q+ qn| 2 + an+1

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ bn+1 | q| 2

=
a2
n+1 | pn(q+ qn) - z| 2\Bigl( 
| q+ qn| 2 + an+1

\Bigr) 2 +
an+1 | q+ qn| 2 | z  - pn(q+ qn)| 2\Bigl( 

| q+ qn| 2 + an+1

\Bigr) 2 + bn+1 | q| 2

=

\left(   a2
n+1\Bigl( 

| q+ qn| 2 + an+1

\Bigr) 2 +
an+1 | q+ qn| 2\Bigl( 

| q+ qn| 2 + an+1

\Bigr) 2

\right)   | pn(q+ qn) - z| 2 + bn+1 | q| 2

=
an+1

| q+ qn| 2 + an+1

| pn(q+ qn) - z| 2 + bn+1 | q| 2 .

(i) In order to show that qn+1 \geq 0, we only need to show that we can choose
q\ast n+1 \geq 0. First, observe that \~fn must attain a minimum by coercivity and

continuity. Therefore, let \~q be a minimizer of \~fn. Hence, it suffices to prove
\~fn(\~q) \geq \~fn(| \~q| ). Let now r \geq 0. We show that on the set \{ q \in \BbbC : | q| = r\} ,
the choice q= r minimizes \~fn. Indeed, for q with | q| = r, it holds that

\~fn(q) =
an+1 | pn(q+ qn) - z| 2

| q+ qn| 2 + an+1

+ bn+1 | q| 2

=
an+1 | pn(q+ qn) - z| 2

r2 + | qn| 2 + 2qnRe(q) + an+1

+ bn+1r
2

\geq an+1

r2 + | qn| 2 + 2qnr+ an+1

| pn(q+ qn) - z| 2 + bn+1r
2

=
an+1 | pn(q+ qn) - z| 2

| r+ qn| 2 + an+1

+ bn+1r
2

=
an+1

\bigm| \bigm| \=zpn(q+ qn) - | z| 2
\bigm| \bigm| 2

(| r+ qn| 2 + an+1) | z| 2
+ bn+1r

2

=
an+1

\bigl( 
(\=zpn)

2 | q| 2 + (\=zpnqn  - | z| 2)2 + 2(\=zpn)(\=zpnqn  - | z| 2)Re (q)
\bigr) 

(| r+ qn| 2 + an+1) | z| 2
+ bn+1r

2

=
an+1

\bigl( 
(\=zpn)

2r2 + (\=zpnqn  - | z| 2)2 + 2(\=zpn)(\=zpnqn  - | z| 2)Re (q)
\bigr) 

(| r+ qn| 2 + an+1) | z| 2
+ bn+1r

2

\geq 
an+1

\bigl( 
(\=zpn)

2r2 + (\=zpnqn  - | z| 2)2 + 2(\=zpn)(\=zpnqn  - | z| 2)r
\bigr) 

(| r+ qn| 2 + an+1) | z| 2
+ bn+1r

2
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1299

=
an+1

\bigm| \bigm| \=zpn(r+ qn) - | z| 2
\bigm| \bigm| 2

(| r+ qn| 2 + an+1) | z| 2
+ bn+1r

2

= \~fn(r),

where the last inequality follows from \=zpn \geq 0 and \=zpnqn \leq | z| 2. Thus, for
any r \geq 0 the minimum of \~fn on the circle of radius r is attained for q = r.
In particular, we obtain \~fn(\~q)\geq \~fn(| \~q| ).

(ii) From the previous part, we know that there is a pair (p\ast n+1, q
\ast 
n+1) minimizing

fn such that q\ast n+1 \geq 0. By definition, it is pn+1 = p\ast n+1 + pn, so we can
multiply (3.13) with \=z to obtain

\=zpn+1 = \=z
an+1pn + z(q\ast n + qn)

| q\ast n + qn| 2 + an+1

=
an+1\=zpn + | z| 2 qn+1

| qn+1| 2 + an+1

\geq 0.

(iii) If pn+1 = 0, the claim follows trivially. Thus, we assume pn+1 \not = 0 and find
from (3.11) that

\=pn+1(qn+1pn+1  - z) + bn+1q
\ast 
n+1 = 0.

Multiplying with \=z and rearranging implies

\=zpn+1qn+1 = - bn+1q
\ast 
n+1

\=z

\=pn+1
+ | z| 2 .

Denote \varphi z = arg z and \varphi pn+1 = arg pn+1. It is

\=z

\=pn+1
= | z| | pn+1|  - 1

e - i\varphi z
\bigl( 
e - i\varphi pn+1

\bigr)  - 1
=

| z| 
| pn+1| 

ei(\varphi pn+1
 - \varphi z) \geq 0,

since \varphi pn+1  - \varphi z = arg(\=zpn+1). Therefore,  - bn+1q
\ast 
n+1

\=z
\=pn+1

\leq 0, which yields

\=zpn+1qn+1 \leq | z| 2.
Note that we can use q\ast n+1 instead of q in (3.12) to compute p\ast n+1. Consequently

\^Un+1 is obtained pointwise via

\^Un+1 =
(\lambda n+1\Delta 

s) \^Un + \^f \^Kn+1\bigm| \bigm| \bigm| \^Kn+1

\bigm| \bigm| \bigm| 2 + \lambda n+1\Delta s

.(3.14)

However, this does not guarantee that applying the inverse Fourier transform to \^Un+1

and \^Kn+1 yields real-valued solutions of (3.6). In order to find such solutions we make
use of the following observation.

Lemma 3.6. Assume that Un and Kn are real-valued and let x \in \BbbR 2. If (u\ast , k\ast )
is a solution of

(u\ast , k\ast )\in min
u,k\in \BbbC 

\biggl\{ \bigm| \bigm| \bigm| \^f(x) - (u+ \^Un(x))(k+ \^Kn(x))
\bigm| \bigm| \bigm| 2

+ \lambda n+1\Delta (x)r | u| 2 + \mu n+1\Delta (x)s | k| 2
\biggr\} 
,

then (\=u\ast , \=k\ast ) is a solution of

(u\ast , k\ast )\in min
u,k\in \BbbC 

\biggl\{ \bigm| \bigm| \bigm| \^f( - x) - \Bigl( u+ \^Un( - x)
\Bigr) \Bigl( 

k+ \^Kn( - x)
\Bigr) \bigm| \bigm| \bigm| 2

+ \lambda n+1\Delta ( - x)r | u| 2 + \mu n+1\Delta ( - x)s | k| 2
\biggr\} 
.
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1300 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

Proof. Note that \^f(x) = \^f( - x), \^Un(x) = \^Un( - x), and \^Kn(x) = \^Kn( - x) by
Proposition 3.1. Furthermore, we have \Delta (x) =\Delta ( - x). Let

h(u,k) :=
\bigm| \bigm| \bigm| \^f(x) - \Bigl( u+ \^Un(x)

\Bigr) \Bigl( 
k+ \^Kn(x)

\Bigr) \bigm| \bigm| \bigm| 2 + \lambda n+1\Delta (x)r | u| 2 + \mu n+1\Delta (x)s | k| 2 ,

and

\~h(u,k) :=
\bigm| \bigm| \bigm| \^f( - x) - 

\Bigl( 
u+ \^Un( - x)

\Bigr) \Bigl( 
k+ \^Kn( - x)

\Bigr) \bigm| \bigm| \bigm| 2 + \lambda n+1\Delta ( - x)r | u| 2 + \mu n+1\Delta ( - x)s | k| 2 .

Since it holds that

\~h(\=u, \=v) =
\bigm| \bigm| \bigm| \^f( - x) - 

\Bigl( 
\=u+ \^Un( - x)

\Bigr) \Bigl( 
\=k+ \^Kn( - x)

\Bigr) \bigm| \bigm| \bigm| 2 + \lambda n+1\Delta ( - x)r | \=u| 2 + \mu n+1\Delta ( - x)s
\bigm| \bigm| \=k\bigm| \bigm| 2

=
\bigm| \bigm| \bigm| \^f(x) - \Bigl( 

\=u+ \^Un(x)
\Bigr) \Bigl( 

\=k+ \^Kn(x)
\Bigr) \bigm| \bigm| \bigm| 2 + \lambda n+1\Delta (x)r | u| 2 + \mu n+1\Delta (x)s | k| 2

=
\bigm| \bigm| \bigm| \^f(x) - \Bigl( 

u+ \^Un(x)
\Bigr) \Bigl( 

k+ \^Kn(x)
\Bigr) \bigm| \bigm| \bigm| 2 + \lambda n+1\Delta (x)r | u| 2 + \mu n+1\Delta (x)s | k| 2 = h(u,k),

the claim follows.

Combining Theorem 3.5 and Lemma 3.6 shows that we can choose the sequence
(Un,Kn)n\in \BbbN 0

such that Un and Kn are real-valued, and \^Kn is nonnegative for every
n\in \BbbN . We summarize this in the following lemma.

Lemma 3.7. There are sequences (Un,Kn)n\in \BbbN 0 of real-valued functions with

(U0,K0)\in argmin
u,k\in L2(\BbbR 2)

\Bigl\{ 
\| f  - k \ast u\| 2L2 + \lambda 0 \| u\| 2Hr + \mu 0 \| k\| 2Hs

\Bigr\} 
and

(Un+1  - Un,Kn+1  - Kn)\in argmin
u,k\in L2(\BbbR 2)

\biggl\{ 
\| f  - (k+Kn) \ast (u+Un)\| 2L2

+ \lambda n+1 \| u\| 2Hr + \mu n+1 \| k\| 2Hs

\biggr\} 
for n \in \BbbN 0, such that \^Kn is real-valued and nonnegative. Moreover, (Un,Kn) can
iteratively be computed as follows:

(i) U0 and K0 are the inverse Fourier transforms of \^U0 and \^K0 in (3.3) and
(3.4), respectively, with \Psi = 1.

(ii) For n \in \BbbN 0, Un+1 and Kn+1 are the inverse Fourier transforms of \^Un+1 =
\^Un + \^un+1 and \^Kn+1 = \^Kn + \^kn+1, where \^un+1, \^kn+1 solve

(\^un+1, \^kn+1)\in argmin
\^u,\^k\in L2(\BbbR 2,\BbbC )

\biggl\{ \bigm\| \bigm\| \bigm\| \^f  - (\^u+ \^Un)(\^k+ \^Kn)
\bigm\| \bigm\| \bigm\| 2
L2

+ \lambda n+1 \| \Delta r\^u\| 2L2 + \mu n+1

\bigm\| \bigm\| \bigm\| \Delta s\^k
\bigm\| \bigm\| \bigm\| 2
L2

\biggr\} 
and satisfy \^kn+1(x) \in [0,\infty ), \^kn+1(x) = \^kn+1( - x), \^un+1(x) = \^un+1( - x) for
all x\in \BbbR 2, as well as sgn (\^un+1) = sgn ( \^f).

Proof. From Lemma 3.6, we know that it suffices to find sequences ( \^Un, \^Kn)n\in \BbbN 
of pointwise minimizers of the integrand in (3.6) on the half-plane \in [0,\infty )\times \BbbR . The
existence of such \^Kn follows from Theorem 3.5. In particular, we have \^Kn(x) \in 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

7/
25

 to
 1

73
.6

6.
20

2.
10

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1301

[0,\infty ) so that by induction over (3.14) we obtain \^Un with sgn ( \^Un(x)) = sgn ( \^f(x)).

Now, extend \^Un and \^Kn by setting \^Kn(x) := \^Kn( - x) and \^Un(x) := \^Un( - x) on
( - \infty ,0]\times \BbbR . According to Lemma 3.6 these extended functions are minimizers of (3.7).
The realness of the inverse Fourier transforms is a consequence of Proposition 3.1 and
the fact that f is real-valued.

We can now construct a method to directly solve (3.9). Following the proof of
Lemma 3.7, it suffices to solve (3.9) pointwise for x\in [0,\infty )\times \BbbR . For better readability,
we again use the notation (3.8). First, we plug (3.13) into (3.11) to obtain\bigm| \bigm| \bigm| \bigm| \bigm| an+1pn + z(\=q+ qn)

| q+ qn| 2 + an+1

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

(q+ qn) - z
an+1\=pn + \=z(q+ qn)

| q+ qn| 2 + an+1

+ bn+1q= 0.

Multiplying with (| q+ qn| 2 + an+1)
2, we get

| an+1\=pn + \=z(q+ qn)| 2 (q+ qn)

 - (anz\=pn + | z| 2 (q+ qn))(| q+ qn| 2 + an+1)

+ bn+1q(| q+ qn| 2 + an+1)
2 = 0.(3.15)

Since we are interested in finding a real solution of this equation, we can assume q \in \BbbR 
and expand to

bn+1(q+ qn)
5  - bn+1qn(q+ qn)

4 + 2anbn+1(q+ qn)
3

(3.16)

+ [2an+1Re(\=pnz) - anz\=pn  - 2anbn+1qn] (q+ qn)
2

+
\Bigl[ 
a2n+1 | pn| 

2  - an+1 | z| 2 + a2n+1bn+1

\Bigr] 
(q+ qn) - a2n+1 (z\=pn + bn+1qn) = 0.

Since both qn and z\=pn are real numbers, this is a polynomial of degree 5 with only real
coefficients. We can thus choose q\ast n+1 to be the real root of (3.16), for which fn as in
(3.9) attains the smallest value. Then p\ast n+1 is determined by (3.12). We have therefore

computed \^un+1 and \^kn+1 on [0,\infty )\times \BbbR . Extending with complex conjugation to \BbbR 2

and taking the inverse Fourier transform then gives real-valued solutions of (3.6), such
that the \^kn+1 is real-valued and nonnegative. Thus, by choosing those minimizers for
which the Fourier transform of the kernel is real-valued and nonnegative in the MHDM
iteration, we implicitly incorporate the constraint \^Kn(x)\geq 0 for all x. Therefore, all
approximations of the kernel will be positive semidefinite, enforcing properties (i)--(iii)
in Corollary 3.4, which acts as a way to break the symmetry of problem (3.2).

Remark 3.8. If more information on the phase of the true kernel is available,
one might want to one choose \psi in (3.3) and (3.4) to be a different complex-valued
function instead of a nonnegative one. In this case, the sequence (\^un, \^kn)n\in \BbbN generated
by (3.7) can be chosen such that sgn \^kn = sgn\psi for all n\in \BbbN . To see this, notice that
substituting sgn (\psi )\^k, sgn (\psi ) \^Kn, sgn ( \=\psi \^f)\^u, and sgn ( \=\psi \^f) \^Un for \^k, \^Kn, \^u, and \^Un,
respectively, in (3.7) does not change the value of the objective function. Thus, we
can use the iterates obtained with the constraint \^k\geq 0 to compute the iterates of an
MHDM with the constraint sgn (\^k) = sgn (\psi ).

In order to further ensure that the iterates are reasonable approximations of the
true image and kernel, we additionally assume f \in L1 and impose constraints on their
means: \int 

\BbbR 2

Kn = 1,

\int 
\BbbR 2

Un =

\int 
\BbbR 2

f(3.17)
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1302 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

for all n\in \BbbN . Those constraints are fairly standard and can, for instance, be found in
[9, 17]. In summary, this means we are considering the constraint sets

S1 =

\biggl\{ 
u :\BbbR 2 \rightarrow \BbbR :

\int 
\BbbR 2

u=

\int 
\BbbR 2

f

\biggr\} 
, S2 =

\biggl\{ 
k :\BbbR 2 \rightarrow \BbbR :

\int 
\BbbR 2

k= 1, \^k\geq 0

\biggr\} 
.

It is not clear if these constraints can be translated into Fourier space such that the
iterates of the MHDM can still be computed in a pointwise manner. Since for any
function u \in L1(\BbbR 2) it is known that \^u is uniformly continuous [5, p. 1], it must be\int 
\BbbR 2 u = \^u(0). However, simply enforcing the constraint \^Un(0) =

\int 
\BbbR 2 f in (3.7) does

not affect
\int 
\BbbR 2 Un as the resulting minimizer in Fourier space would only differ from

the unconstrained one on a set of measure 0 and \^Un is an element of Hr(\BbbR n) and
not necessarily of L1(\BbbR n). Note that this problem does not occur in the discretized
setting we use for the numerical experiments, as will be outlined later.

Remark 3.9. Instead of employing a Bessel potential norm as a penalty term
for the image, it would be a natural idea to use a functional that favors expected
structures. For instance, one could use the total variation to promote cartoon-like
images. However, numerical experiments suggest that the iterates of such blind-
deconvolution MHDM seem to approximate the trivial solution u = f and k = \delta ,
where \delta denotes the Dirac delta distribution. This could possibly be overcome by a
specific choice for the sequences (\lambda n)n\in \BbbN and (\mu n)n\in \BbbN but would first require a deeper
analysis of convergence behavior of the blind MHDM in this scenario, which is not
within the scope of this work.

4. Numerical experiments1 . The goal of our numerical experiments is to il-
lustrate the behavior and robustness of the blind deconvolution MHDM. To this end,
we compare the reconstructed image and kernel from the proposed method to those
obtained from using a nonblind MHDM or a single-step variational regularization, as
in (3.2). To achieve a fair comparison, we use the same regularizers for all methods
under investigation. By using squared Bessel potential norms, we obtain reasonable
reconstructions that might not necessarily outperform methods with more problem-
specific regularizers. However, we think that comparing our approach to such methods
should be done with a version of the MHDM that also uses more sophisticated regu-
larizers, which is beyond the scope of this work. We want to stress that the advantage
of our method is the interpretability of the scale decomposition and the potential to
adapt it to a multitude of regularizers that possibly could vary along the iterations
rather than significantly better reconstructions than those of a single-step variational
approach with optimal regularization parameters.

4.1. Discretization and implementation. Recall that J1 = \| \cdot \| 2Hr and J2 =
\| \cdot \| 2Hs for r, s \geq 0. We discretize an image u supported on a rectangular domain
(a, b)\times (c, d) as a matrix, i.e., u \in \BbbR m\times n. Following the derivation in section 7.1.2 of
[19], we define the weight matrix for the Sobolev norm in Fourier space by the matrix
\Delta \in \BbbR m\times n with entries

\Delta i,j = 1+ 2m2

\biggl( 
1 - cos

\biggl( 
2\pi i

m

\biggr) \biggr) 
+ 2n2

\biggl( 
1 - cos

\biggl( 
2\pi j

n

\biggr) \biggr) 
.

Hence, a discretization of the Sobolev norm is given by

1The program code is available via https://github.com/TobiasWolf-math/Blind-Deconvolution-
MHDM and as ancillary file from the arXiv page of this paper. Reference [2] does not refer to the
arXiv version of this paper.
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1303

\| u\| 2Hr =

m\sum 
i=1

n\sum 
j=1

\Delta r
i,j | \^ui,j | 

2
,

where \^u denotes the discrete 2D Fourier transform. Therefore, the nth step of the
MHDM is given by the pointwise update rule

\Bigl( 
\^k
(n)
i,j , \^u

(n)
i,j

\Bigr) 
\in argmin

\^k,\^u\in \BbbC 

\biggl\{ \Bigl( \Bigl( 
\^k+ \^k

(n - 1)
i,j

\Bigr) \Bigl( 
\^u+ \^u

(n - 1)
i,j

\Bigr) 
 - \^fi,j

\Bigr) 2

+ \lambda n\Delta 
r
i,j | \^u| 2 + \mu n\Delta 

s
i,j

\bigm| \bigm| \bigm| \^k\bigm| \bigm| \bigm| 2\biggr\} ,

(4.1)

with \^k - 1
i,j = u - 1

i,j = 0. Thus for n= 0, we can solve (4.1) by

\^u
(0)
i,j = sgn( \^fi,j)

\sqrt{} \biggl[ \sqrt{} 
\mu 0

\lambda 0
\Delta s - r

i,j

\bigm| \bigm| \bigm| \^fi,j\bigm| \bigm| \bigm|  - \mu 0\Delta s
i,j

\biggr] 
+

,

\^k
(0)
i,j =

\sqrt{}    \Biggl[ \sqrt{} \lambda 0
\mu 0

\Delta r - s
i,j

\bigm| \bigm| \bigm| \^fi,j\bigm| \bigm| \bigm|  - \lambda 0\Delta r
i,j

\Biggr] 
+

.

For n\geq 1, we make the same substitutions as in (3.8):

an = \lambda n\Delta 
r
i,j , bn = \mu n\Delta 

s
i,j ,

qn = \^k
(n - 1)
i,j , pn = \^u

(n - 1)
i,j , z = \^fi,j .

To find critical pairs (\^ki,j , \^ui,j), we compute the positive roots of (3.16) that yield
candidates for \^ki,j and use (3.13) to obtain the corresponding candidates for \^ui,j .
The minimizing pair can then be found by choosing the critical pair, which gives
the smallest value for the objective function in (4.1) and enforce the antisymmetry
condition as described in the proof of Lemma 3.7. In order to obtain meaningful
reconstructions u(n), k(n), we employ the additional constraint (3.17) that the mean
of the kernel is 1 and the mean of the reconstructed image matches the mean of the
observation. In the discretization that means

m\sum 
i=1

n\sum 
j=1

k
(n)
i,j = 1,

m\sum 
i=1

n\sum 
j=1

u
(n)
i,j =

m\sum 
i=1

n\sum 
j=1

f
(n)
i,j .

Since we are using discrete Fourier transforms, these constraints are equivalent to
\^ki,1 = 1 and \^u1,1 =

\sum m
i=1

\sum n
j=1 f

(n)
i,j . Thus, we implement them by making the updates

\^k
(n)
1,1 =

\Biggl\{ 
1 if n= 0,

0 if n\geq 1
and \^u

(n)
1,1 =

\Biggl\{ 
\^f1,1 if n= 0,

0 if n\geq 1

instead of the previous procedure for the first entries of the matrices.

4.2. Behavior of the blind-deconvolution MHDM. For illustrating the be-
havior of the proposed method, we consider the image Barbara (denoted by U\dagger ),
which has been blurred by convolution with two different kernels. For the first blur-
ring we choose a Gaussian kernel K\dagger 

1 of mean \mu = 0 and variance \sigma = 8. In the
second kernel K\dagger 

2 , we use a convex combination of several Gaussians. In both cases,
the blurred image was additionally corrupted with additive Gaussian noise (mean
\mu = 0; variance \sigma = 4\times 10 - 4). That is, we deal with observations f\delta 1 , f

\delta 
2 obtained via
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1304 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

Fig. 1. From left to right: True test image U\dagger , observation obtained with single Gaussian blur
and noise f\delta 

1 , and observation obtained with mixture of Gaussians and noise f\delta 
2 .

Fig. 2. Left: Single Gaussian kernel used to obtain f\delta 
1 . Right: Convex combination of multiple

Gaussian kernels used to obtain f\delta 
2 .

f\delta i =Utrue \ast Ki +n\delta for i= 1,2. The true image, blurred images, and noise-corrupted
blurred images can be found in Figure 1, and the corresponding kernels are shown in
Figure 2.

Curiously, the results of all our experiments (including the more extensive exper-
iments later) improve if s is chosen smaller than r. This means that we penalize the
image with a more smoothness-promoting regularizer than the kernel. Furthermore,
we observe that as long as the ratio \lambda 0

\mu 0
is constant, the actual choice of the initial

parameters \lambda 0, \mu 0 does not significantly influence the quality of the final iterates but
only the number of iterations needed until the discrepancy principle is satisfied.

For our experiments we choose r= 1 and s= 0.1 and run the MHDM with initial
parameters \lambda 0 = 1.4 \times 10 - 4, \mu 0 = 6.3 \times 105. In accordance with Theorem 2.2, we
choose the parameters at the nth step as \lambda n = 4 - n\lambda 0 and \mu n = 4 - n\mu 0. Since in
this experiment we artificially added noise and hence know the exact noise level, the
iteration is stopped according to the discrepancy principle (2.2) with \tau =

\surd 
1.001.

The reconstructed kernels and images are illustrated in Figure 3. Figure 4 shows
the decay of the residual for both experiments. In both figures, one can clearly
see the monotone decrease of the residual, confirming the theoretical results from
Theorem 2.1. Figure 5 shows the different scales un that are obtained with the MHDM
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1305

Fig. 3. Left: Reconstructed kernel and image at stopping index for data f\delta 
1 . Right: Recon-

structed kernel and image at stopping index for data f\delta 
2 .

employed for the observation f\delta 2 . One can see that each step adds another layer of
details to the reconstruction. The corresponding scales kn and iterates Kn =

\sum n
i=0 kn

for the reconstructed kernel can be seen in Figures 6 and 7. It appears that the role of
the scales is to adapt the reconstructed kernel in a twofold way. On the one side, the
height of the peak seems to increase along the iterations, while its radius decreases.
On the other side, the off-peak oscillations appear to be flattened. Notably, the early
coarse scales seem to recover the support of the bump, and the fine scales mostly
shape the height of it. In the experiment with data f\delta 1 , the scale decomposition for
the reconstructed image and kernel look similar.

Moreover, the experiments suggest that a suboptimal choice for the initial ratio
leads to a worse kernel reconstruction, while, upon an affine rescaling of the grayscale
values, the reconstructed images are visually still good. This is illustrated in Figure 8,
where the reconstructed kernels and images (with the pixel values rescaled) for differ-
ent initial parameters \lambda 0 and \mu 0 are shown. We observe that visually all images are
indistinguishable and approximate the true image well. Similarly, the corresponding
kernels are structurally similar to the real one, but their numerical values are very
disproportional.

4.3. Experiment 1: Comparison of blind MHDM versus nonblind
MHDM. We compare the proposed blind MHDM to a nonblind version of the
MHDM (see, for instance, [29, 26]) that uses the penalty term J = \| \cdot \| 2Hr for the
image. Instead of including the reconstruction of the blurring kernel in the method,
we simply make a guess in the nonblind MHDM and stop the iteration once the
discrepancy principle is satisfied. The nonblind MHDM therefore only requires the
choice of one initial parameter \lambda 0, which we choose to be the same as for the blind

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1306 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

Fig. 4. Left: Residual of the blind MHDM and noise level for f\delta 
1 . Right: Residual of the blind

MHDM and noise level for f\delta 
2 .

Fig. 5. Scale decomposition un obtained from f\delta 
2 .

deconvolution MHDM and also decrease according to the rule \lambda n = 4 - n\lambda 0. To com-
pare the two methods, we test the nonblind MHDM for 1000 centered Gaussian kernels
with variances ranging between 1 and 12 as guessed kernels.

In Figures 9 and 10, we compare the performance of the blind MHDM with the
nonblind MHDM algorithm in terms of the error measures PSNR, SSIM (Figure 9),
and the L2-error of the kernel (Figure 10). We consider either the data f\delta 1 (figures
on the left-hand side) or the data f\delta 2 (figures on the right-hand side). In each of the
plots, the values on the x-axis correspond to the guessed variance \sigma of the Gaussian
kernel used for the nonblind MHDM. The full line corresponds to the values of the
resulting respective error measures, whereas the constant dashed line represents the
value of the blind MHDM. Clearly, the quality of the nonblind algorithms depends
on the correctness of the choice of \sigma . For the observation f\delta 1 , which corresponds to
blurring with a single Gaussian kernel, the nonblind MHDM expectedly outperforms

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

7/
25

 to
 1

73
.6

6.
20

2.
10

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1307

Fig. 6. Scale decomposition kn obtained from f\delta 
2 .

Fig. 7. Iterates Kn =
\sum n

i=0 ki obtained from f\delta 
2 .

the blind MHDM only for kernel guesses that are similar to the true kernel. We
observe similar behavior for the case f\delta 2 with multiple Gaussian kernels used in the
blurring. However, let us point out that, especially for the error measures PSNR
and SSIM, the nonblind method has only a rather modest advantage and only in
the case when the ``guessed"" \sigma is close to the true one, while in case of a wrong
guess, the nonblind method can go wrong quite dramatically, as can be seen from
the experiments with observation f\delta 2 (the bottom line in Figure 9). To further test

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1308 T. WOLF, S. KINDERMANN, E. RESMERITA, AND L. VESE

Fig. 8. Kernel (top) and image (bottom) reconstructions obtained by running the blind-
deconvolution MHDM with different initial parameters and rescaling the pixel values. From left
to right: \lambda 0 = 2\times 10 - 3 and \mu 0 = 6.3\times 105, \lambda 0 = 1.4\times 10 - 4 and \mu 0 = 1\times 103, \lambda 0 = 2\times 10 - 3 and
\mu 0 = 1\times 103, \lambda 0 = 2\times 103 and \mu 0 = 1\times 10 - 3.

Table 1
Average ratio of PSNR and SSIM between the images obtained via blind and nonblind decon-

volution MHDM sorted by noise level and blurring kernel, respectively.

\sigma noise
\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{d}
\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R}\mathrm{g}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{s}

\mathrm{S}\mathrm{S}\mathrm{I}\mathrm{M}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{d}
\mathrm{S}\mathrm{S}\mathrm{I}\mathrm{M}\mathrm{g}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{s}

kernel \mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{d}
\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R}\mathrm{g}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{s}

\mathrm{S}\mathrm{S}\mathrm{I}\mathrm{M}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{d}
\mathrm{S}\mathrm{S}\mathrm{I}\mathrm{M}\mathrm{g}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{s}

0.0004 0.870 0.903 1 0.907 0.931

4e-05 0.855 0.892 2 0.875 0.905

0.003 0.892 0.906 3 0.835 0.865

this information, we repeat the experiment for 16 different test images, where each
of those is corrupted by 3 different blurring kernels: Kernel 1 is a single centered
Gaussian kernel with variance 8 representing a strong blur, kernel 2 is the convex
combination of 4 different Gaussian kernels with variances ranging from 1 to 5 used
in the previous experiments, while kernel 3 is a centered Gaussian kernel with variance
2 and represents a mild blur. Additionally, to all blurred images we add Gaussian
noise with respective variances 0.0004,0.00004,0.003. Thus we consider a total of 144
different test images. We then compute approximate solutions of the blind deblurring
problem for these images using the MHDM with discrepancy principle for \tau =

\surd 
1.001.

Thereafter, we again run 1000 nonblind versions of the MHDM using 1000 ``guessed""
Gaussian kernels with variances between 1 and 12. In Table 1 we report the average
ratio of the PSNR and SSIM values between the image obtained via blind MHDM
and the best reconstructed image from the nonblind method with respect to the noise
or blurring kernel.

We note that, on average, the blind MHDM performs at most 13\% worse than the
optimal nonblind MHDM. These results indicate that the blind MHDM is a robust
method that produces reasonable approximations. In particular, if the blurring kernel
cannot be estimated with high accuracy, then the blind MHDM is superior to nonblind
approaches.

4.4. Experiment 2: Comparison blind MHDM versus variational blind
deconvolution. We compare the blind deconvolution MHDM with a single-step vari-
ational regularization as in (3.2). To achieve a fair comparison of the methods, we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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APPLICATIONS OF MHDM TO BLIND DECONVOLUTION 1309

Fig. 9. Top left: PSNR values for nonblind MHDM with guessed kernel for different guesses of
the kernel and data f\delta 

1 , Top right: SSIM values for nonblind MHDM with guessed kernel for different
guesses of the kernel and data f\delta 

1 , Bottom left: PSNR values for nonblind MHDM with guessed kernel
for different guesses of the kernel and data f\delta 

2 , Bottom right: SSIM values for nonblind MHDM with
guessed kernel for different guesses of the kernel and data f\delta 

2 .

Fig. 10. Comparison of the relative L2 error of the guessed kernel with the relative error of the
kernel reconstructed by the blind MHDM with observation f\delta 

1 (left) and f\delta 
2 (right).

optimize the regularization parameters. For the single-step regularization we proceed
as follows: For a given ratio of regularization parameters \mu 0

\lambda 0
, we compute regularized

solutions of the blind deconvolution problem by a grid search. As for the MHDM,
we start this grid search by computing minimizers for an initial choice of param-
eters (\lambda ,\mu ). The consecutive iterates (uvarn , kvarn ) are then obtained by computing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 2
Comparison of the MHDM and the single-step variational blind deblurring for the different

noise variances with respect to the average PSNR and SSIM values for the reconstructed image and
average relative L2-error of the reconstructed kernel. The numbers in brackets are the corresponding
standard deviations.

\sigma noise PSNR\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} PSNR\mathrm{v}\mathrm{a}\mathrm{r} SSIM\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} SSIM\mathrm{v}\mathrm{a}\mathrm{r} err\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} err\mathrm{v}\mathrm{a}\mathrm{r}

0.0004 20.843 (2.524) 20.843 (2.527) 0.594 (0.124) 0.593 (0.125) 0.492 (0.135) 0.496 (0.133)

0.00004 21.128 (2.641) 21.122 (2.639) 0.624 (0.131) 0.623 (0.131) 0.506 (0.180) 0.518 (0.219)
0.003 20.444 (2.344) 20.393 (2.352) 0.554 (0.123) 0.534 (0.128) 0.590 (0.214) 0.703 (0.244)

Table 3
Comparison of the MHDM and the single-step variational blind deblurring for the different

blurring kernels with respect to the average PSNR and SSIM values for the reconstructed image and
average relative L2-error of the reconstructed kernel. The numbers in brackets are the corresponding
standard deviations.

kernel PSNR\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} PSNR\mathrm{v}\mathrm{a}\mathrm{r} SSIM\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} SSIM\mathrm{v}\mathrm{a}\mathrm{r} err\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} err\mathrm{v}\mathrm{a}\mathrm{r}

1 19.280 (1.825) 19.273 (1.823) 0.517 (0.129) 0.510 (0.127) 0.473 (0.192) 0.535 (0.206)

2 21.359 (2.362) 21.354 (2.355) 0.612 (0.112) 0.612 (0.113) 0.569 (0.145) 0.582 (0.186)
3 21.775 (2.554) 21.732 (2.590) 0.642 (0.110) 0.628 (0.128) 0.547 (0.197) 0.602 (0.269)

solutions of (3.2) with parameters (\lambda n, \mu n) = (4n\lambda 0,4
n\mu 0). This procedure is termi-

nated once the discrepancy principle (2.2) with \tau =
\surd 
1.001 is satisfied. Therefore, the

grid search and the MHDM are stopped according to the same rule which allows us to
investigate the effect of the multiscale decomposition. We then optimize both meth-
ods with respect to the ratio \mu 0

\lambda 0
of the initial parameters. Here we consider optimal

those parameters which maximize the PSNR value of the reconstructed image at the
iterate satisfying the stopping rule. In order to observe the effects of the multiscale
decomposition, we additionally require that both methods run for at least 10 itera-
tions until the discrepancy principle is met. This way, we ensure that there are enough
iterations such that the multiscale effects are observable on the reconstructions. For
the experiments, we consider the same 144 test images as in the previous section.
The average PSNR and SSIM values of the reconstructed images and the average
relative L2-error of the reconstructed kernels, as well as the corresponding standard
deviations for both methods, are shown in Table 2 (averages and standard deviations
for the different levels of noise) and Table 3 (averages and standard deviations for the
different blurring kernels). We observe that, on average, the MHDM performs slightly
better with respect to all considered metrics, apart from the average PSNR for noise
with variance 0.0004. Based on a closer inspection of the experimental data, we notice
that the advantage of the MHDM is, in part, due to the MHDM terminating more
frequently with reconstructions whose residual is closer to the stopping threshold \tau \delta 2.
This is illustrated in Tables 4 and 5, where we omit those experiments in which the
residuals of the MHDM and the variational grid search at the stopping index differ
by more than 0.1\tau \delta 2. We notice that, by neglecting these ``outliers,"" both methods
perform even more similarly with respect to the quality indicators. By our numerical
tests we thus conclude that the MHDM produces qualitatively similar approximations
of the true image and kernel and typically terminates with a residual closer to the
stopping threshold. This means the MHDM is more robust than a grid search for
single-step blind deblurring.

Furthermore, we observe for both methods that the optimal ratio \mu 0

\lambda 0
depends

more on the true image and less on the kernel used to obtain the blurred image.
Additionally, for a given image, there is only a slight difference between the optimal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 4
Comparison of the MHDM and the single-step variational blind deblurring for the different

noise variances with respect to the average PSNR and SSIM values for the reconstructed image and
average relative L2-error of the reconstructed kernel after removing ``outliers."" The numbers in
brackets are the corresponding standard deviations.

\sigma noise PSNR\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} PSNR\mathrm{v}\mathrm{a}\mathrm{r} SSIM\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} SSIM\mathrm{v}\mathrm{a}\mathrm{r} err\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} err\mathrm{v}\mathrm{a}\mathrm{r}

0.0004 20.843 (2.524) 20.843 (2.527) 0.594 (0.124) 0.593 (0.125) 0.492 (0.135) 0.496 (0.133)
0.00004 21.144 (2.667) 21.135 (2.666) 0.627 (0.130) 0.627 (0.131) 0.504 (0.181) 0.500 (0.178)

0.003 20.428 (2.437) 20.437 (2.444) 0.552 (0.127) 0.546 (0.127) 0.594 (0.223) 0.657 (0.198)

Table 5
Comparison of the MHDM and the single-step variational blind deblurring for the different

blurring kernels with respect to the average PSNR and SSIM values for the reconstructed image
and average relative L2-error of the reconstructed kernel after removing ``outliers."" The numbers in
brackets are the corresponding standard deviations.

kernel PSNR\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} PSNR\mathrm{v}\mathrm{a}\mathrm{r} SSIM\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} SSIM\mathrm{v}\mathrm{a}\mathrm{r} err\mathrm{M}\mathrm{H}\mathrm{D}\mathrm{M} err\mathrm{v}\mathrm{a}\mathrm{r}

1 19.280 (1.825) 19.273 (1.823) 0.517 (0.129) 0.510 (0.127) 0.473 (0.192) 0.535 (0.206)

2 21.380 (2.383) 21.372 (2.377) 0.615 (0.111) 0.615 (0.112) 0.568 (0.146) 0.564 (0.143)

3 21.880 (2.633) 21.897 (2.636) 0.648 (0.112) 0.649 (0.113) 0.547 (0.206) 0.547 (0.204)

ratios of initial parameters for the MHDM and the grid search in the single-step
approach.

5. Conclusion. We introduce the Multiscale Hierarchical Decomposition
Method (MHDM) for the blind deconvolution problem and show convergence of the
residual in the noise-free case and then in the noisy data case by employing a discrep-
ancy principle. To demonstrate the efficiency and behavior of the proposed method,
we focus on employing fractional Sobolev norms as regularizers and develop a way
to compute the appearing minimizers explicitly in a pointwise manner. We want to
stress that in our experience, any variational approach to blind deconvolution should
incorporate prior information on the expected blurring kernel. In our setting, this
was done by enforcing a positivity constraint on the Fourier transform of the kernels,
thus favoring, e.g., Gaussian structures. Numerical comparisons with a single-step
variational method and a nonblind MHDM show that our approach produces compa-
rable results, in a more stable manner. Additionally, the scale decomposition of both
reconstructed kernel and image provides a meaningful interpretation of the involved
iteration steps. For future work, this opens up the possibility to modify the method
based on prior information of the underlying true solution. By using multiple penalty
terms throughout the iteration, one could construct approximate solutions that admit
different structures at different levels of detail. Nonetheless, we believe that at first a
better understanding of iterates' convergence behavior is necessary to systematically
refine the method. In future research, we aim to adapt the proposed method for pa-
rameter identification problems with unknown forward operator and the classification
of blurring operators occurring in real applications.

Acknowledgments. We thank Michael Quellmalz (Technische Universit\"at
Berlin) for his valuable remarks and literature suggestion on the positivity of Fourier
transforms. We want to thank the referee for the useful and constructive comments
that greatly helped to improve the manuscript.
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